Distinguishing number and distinguishing index of some operations on graphs

نویسندگان
چکیده

منابع مشابه

Distinguishing number and distinguishing index of natural and fractional powers of graphs

‎The distinguishing number (resp. index) $D(G)$ ($D'(G)$) of a graph $G$ is the least integer $d$‎ ‎such that $G$ has an vertex labeling (resp. edge labeling) with $d$ labels that is preserved only by a trivial‎ ‎automorphism‎. ‎For any $n in mathbb{N}$‎, ‎the $n$-subdivision of $G$ is a simple graph $G^{frac{1}{n}}$ which is constructed by replacing each edge of $G$ with a path of length $n$...

متن کامل

Distinguishing Number of some Cir- culant Graphs

Introduced by Albertson and al. [1], the distinguishing number D(G) of a graph G is the least integer r such that there is a r-labeling of the vertices of G that is not preserved by any nontrivial automorphism of G. Most of graphs studied in literature have 2 as a distinguishing number value except complete, multipartite graphs or cartesian product of complete graphs not depend on n. In this pa...

متن کامل

On Neighbor-Distinguishing Index of Planar Graphs

A proper edge colouring of a graph G without isolated edges is neighbour-distinguishing if any two adjacent vertices have distinct sets consisting of colours of their incident edges. The neighbour-distinguishing index of G is the minimum number ndi(G) of colours in a neighbour-distinguishing edge colouring of G. According to a conjecture by Zhang, Liu and Wang (2002), ndi(G) ≤ ∆(G) + 2 provided...

متن کامل

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Information and Optimization Sciences

سال: 2018

ISSN: 0252-2667,2169-0103

DOI: 10.1080/02522667.2017.1294304